
Unifying Solver
Frameworks

Barry F. Smith
Argonne National

Laboratory

Math ISIC Review, 13-14 May 2003

Common software infrastructure for
nonlinear PDE solvers

User codes to the problem they
are solving, not the algorithm
used to solve the problem
Implementation of various
algorithms reuse common
concepts and code when
possible, without losing
efficiency

bAx =
Optimizer

Linear
solver

Eigensolver

Time
integrator

Nonlinear
solver

Indicates
dependence

Sens. Analyzer

Math ISIC Review, 13-14 May 2003

Encompassing …
Newton’s method

Direct solvers
Matrix-based preconditioned solvers
Matrix-free methods
Multigrid linear solvers (Newton-MG)

Matrix-based and matrix-free

Nonlinear multigrid
aka Full approximation scheme (FAS)
aka MG-Newton

Math ISIC Review, 13-14 May 2003

Software engineering ingredients

Standard solver interfaces (SIDL)
Solver libraries (obviously ☺)
Automatic differentiation (AD)
Code generation

Math ISIC Review, 13-14 May 2003

Equilibrium:

Model equations: (Porcelli et al., 1993, 1999)
Testbed: 2D Hall MHD sawtooth instability

Math ISIC Review, 13-14 May 2003

Hall Discretization
(provided by K. Germaschewski, CMRS)

typedef struct {
double phi,psi,U,F;

} Field;

Function(DALocalInfo *info,Field **x,Field **f,…)
…..

/* Compute over the local points */
for (j=info->ys; j<info->ys+info->ym; j++) {

for (i=info->xs; i<info->xs+info->xm; i++) {

Math ISIC Review, 13-14 May 2003

Hall Discretization (cont.)

/* Lap(phi) - U */
f[j][i].phi = (Lapl(x,phi,i,j) - x[j][i].U) * hxhy;

/* psi - d_e^2 * Lap(psi) - F */
f[j][i].psi = (x[j][i].psi - de2 * Lapl(x,psi,i,j) - x[j][i].F) *
hxhy;

/* vx * U_x + vy * U_y - (B_x * F_x + B_y * F_y) / d_e ….
*/
f[j][i].U = ((vxp * (D_xm(x,U,i,j)) + vxm * (D_xp(x,U,i,j)) +

vyp * (D_ym(x,U,i,j)) + vym * (D_yp(x,U,i,j))) -
(Bxp * (D_xm(x,F,i,j) + F_eq_x) + Bxm * ….

….

Math ISIC Review, 13-14 May 2003

Algorithm review

F(u) = 0, Jacobian A(u)
Newton

Newton – SOR (1 inner sweep)

SOR-Newton (1 inner sweep)

1() ()u u A u F u−← −

1(){ () ()[]}i ji ii i ij j
j i

u u A u F u A u u u−

<

← − − −∑

1() ()ii ii iu u A u F u−← −

Math ISIC Review, 13-14 May 2003

Cute observation

() ()

() () ()[]

ii ii

ji i ij j

A u A u

F u F u A u u u

≈

≈ + −∑

1(){ () ()[]}i ji ii i ij j
j i

u u A u F u A u u u−

<

← − − −∑

1() ()ii ii iu u A u F u−← −
SOR-Newton

With approximations

Gives Newton-SOR

Math ISIC Review, 13-14 May 2003

⇒ Matrix-free linear relaxation
(Gauss-Seidel)

is almost identical to nonlinear relaxation

Math ISIC Review, 13-14 May 2003

Function and Jacobian evaluation

FAS requires pointwise
Newton desires global
Newton-MG desires both

Math ISIC Review, 13-14 May 2003

Automatic Differentiation

Given code for can compute
A(u) and
A(u)*w efficiently

Given code for can compute
and

efficiently

()F u

()iF u
()iiA u

()ij j
j

A u w∑

Math ISIC Review, 13-14 May 2003

Code generation (in-lining ☺)

• Inside the small dimensional Newton
methods is a user-provided function
and (AD) Jacobian

• Big performance hit if handled directly
with components

Math ISIC Review, 13-14 May 2003

Coarse grid correction is not an issue ☺

Newton-MG

MG-Newton

() ()H H
T

H

A Ru c RF u
u u R c

=

← −

)

() () () 0H H HF Ru c F Ru RF u+ − + =
))

Math ISIC Review, 13-14 May 2003

Conclusion

The algorithmic/mathematical building
blocks for Newton-MG and MG-Newton
are essentially the same
Thus the software building blocks should
be also (and they will be ☺).

